Abstract

Shanghai, as an international metropolis, has an ever-growing population and ongoing economic development, so the pressure on the natural resources and the environment is continually increased. How to ease the tension among economy, resources and the environment? The sustainable green development of Shanghai has been the focus of the public and the government. Urban carrying capacity involves complex interactions among population, the economy and the environment. Understanding the balance between these elements is an important scientific issue for sustainable green development in Shanghai. For this purpose, the balance between urban development and ecological resources was emphasized, and population carrying capacity, GDP (Gross Domestic Product), green ecological index and added value of secondary industry were investigated to measure urban carrying capacity. The dynamic changes of the carrying population, GDP, green ecological index and the added value of the secondary industry in Shanghai during 2018–2035 were simulated using a system dynamics model including three subsystems and 66 variables from a macroscopic perspective. Five development scenarios were employed during the simulation, namely a status-quo scenario, an economic-centric scenario, a high-tech-centric scenario, an environment-centric scenario and a coordinated equilibrium scenario. The simulation results indicated that the potential of carrying population will decline by 2035, and the economic and ecological indicators will also be at a low level under the status-quo scenario, which is an inferior option, while the under coordinated equilibrium scenario, the ecological environment, population growth and economic development will all perform excellently, which is the best option. Therefore, the urban carrying capacity of population, economy and resources in Shanghai may be improved by increasing investment in scientific research, increasing the expenditure on environmental protection and improving the recycling efficiency of waste solid and water. The results provide insights into the urban carrying capacity of Shanghai city.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call