Abstract

The augmentation of renewable energy sources within the global energy portfolio is imperative for mitigating the impacts of climate change. Nonetheless, the inherent variability, intermittency, and unpredictability associated with certain forms of renewable energy present significant challenges. Effective integration of these energy sources into existing grids is contingent upon accurate predictions and robust scenario planning. To address this, we introduce a novel data-driven framework that facilitates the generation of energy scenarios without relying on intricate physical models or extensive assumptions. This framework is underpinned by an innovative combination of a grey neural network, which is fine-tuned using a genetic algorithm, and a Gaussian Copula to enhance the prediction accuracy. Extensive experimental analyses validate the effectiveness and advanced capabilities of our proposed model. Moreover, the adaptable nature of this data-driven approach allows for its potential application across various sectors within the sustainable industry, further underscoring its versatility and utility.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.