Abstract

BackgroundUsing single-cell RNA sequencing (scRNA-seq) data to diagnose disease is an effective technique in medical research. Several statistical methods have been developed for the classification of RNA sequencing (RNA-seq) data, including, for example, Poisson linear discriminant analysis (PLDA), negative binomial linear discriminant analysis (NBLDA), and zero-inflated Poisson logistic discriminant analysis (ZIPLDA). Nevertheless, few existing methods perform well for large sample scRNA-seq data, in particular when the distribution assumption is also violated.ResultsWe propose a deep learning classifier (scDLC) for large sample scRNA-seq data, based on the long short-term memory recurrent neural networks (LSTMs). Our new scDLC does not require a prior knowledge on the data distribution, but instead, it takes into account the dependency of the most outstanding feature genes in the LSTMs model. LSTMs is a special recurrent neural network, which can learn long-term dependencies of a sequence.ConclusionsSimulation studies show that our new scDLC performs consistently better than the existing methods in a wide range of settings with large sample sizes. Four real scRNA-seq datasets are also analyzed, and they coincide with the simulation results that our new scDLC always performs the best. The code named “scDLC” is publicly available at https://github.com/scDLC-code/code.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.