Abstract

Double patterning technology overlay errors result in critical dimension (CD) distortions, and CD nonuniformity leads to overlay errors, demanding increased critical dimension uniformity (CDU) and improved overlay control. Scatterometry techniques are used to characterize the CD uniformity, focus, and dose control. We present CDU and profile characterization for spacer double patterning structures by advanced scatterometry methods. Our results include normal incidence spectroscopic reflectometry (NISR) and spectroscopic ellipsometry (SE) characterization of CDU sensitivity in spacer double patterning stacks. We further show the results of spacer DP structures by NISR and SE measurements. Metrology comparisons at various process steps including litho, etch, and spacer, and validation of CDU and profile, are all benchmarked against traditional critical dimension scanning electron microscope measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call