Abstract

Bond-dependent magnetic interactions can generate exotic phases such as Kitaev spin-liquid states. Experimentally determining the values of bond-dependent interactions is a challenging but crucial problem. Here, I show that each symmetry-allowed nearest-neighbor interaction on triangular and honeycomb lattices has a distinct signature in paramagnetic neutron-diffraction data, and that such data contain sufficient information to determine the spin Hamiltonian unambiguously via unconstrained fits. Moreover, I show that bond-dependent interactions can often be extracted from powder-averaged data. These results facilitate experimental determination of spin Hamiltonians for materials that do not show conventional magnetic ordering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call