Abstract

Motivated by recent experiments on $\alpha$-RuCl$_3$, we investigate a possible quantum spin liquid ground state of the honeycomb-lattice spin model with bond-dependent interactions. We consider the $K-\Gamma$ model, where $K$ and $\Gamma$ represent the Kitaev and symmetric-anisotropic interactions between spin-1/2 moments on the honeycomb lattice. Using the infinite density matrix renormalization group (iDMRG), we provide compelling evidence for the existence of quantum spin liquid phases in an extended region of the phase diagram. In particular, we use transfer matrix spectra to show the evolution of two-particle excitations with well-defined two-dimensional dispersion, which is a strong signature of quantum spin liquid. These results are compared with predictions from Majorana mean-field theory and used to infer the quasiparticle excitation spectra. Further, we compute the dynamical structure factor using finite size cluster computations and show that the results resemble the scattering continuum seen in neutron scattering experiments on $\alpha$-RuCl$_3$. We discuss these results in light of recent and future experiments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call