Abstract

The refraction of surface gravity waves by currents leads to spatial modulations in the wave field and, in particular, in the significant wave height. We examine this phenomenon in the case of waves scattered by a localised current feature, assuming (i) the smallness of the ratio between current velocity and wave group speed, and (ii) a swell-like, highly directional wave spectrum. We apply matched asymptotics to the equation governing the conservation of wave action in the four-dimensional position–wavenumber space. The resulting explicit formulas show that the modulations in wave action and significant wave height past the localised current are controlled by the vorticity of the current integrated along the primary direction of the swell. We assess the asymptotic predictions against numerical simulations using WAVEWATCH III for a Gaussian vortex. We also consider vortex dipoles to demonstrate the possibility of ‘vortex cloaking’ whereby certain currents have (asymptotically) no impact on the significant wave height. We discuss the role of the ratio of the two small parameters characterising assumptions (i) and (ii) above, and show that caustics are significant only for unrealistically large values of this ratio, corresponding to unrealistically narrow directional spectra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.