Abstract

Based on a combination of the extended boundary condition method (EBCM) and generalized Lorenz-Mie theory (GLMT), a semi-analytical solution to the scattering of an on-axis Gaussian beam by an arbitrarily shaped chiral object is constructed, by expanding the incident Gaussian beam, scattered fields as well as internal fields in terms of appropriate spherical vector wave functions (SVWFs). The unknown expansion coefficients are determined by using Schelkunoff׳s equivalence theorem and continuous boundary conditions. Numerical results of the normalized differential scattering cross-section are presented, and the scattering characteristics are discussed concisely.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.