Abstract
A semi-analytical solution to the scattering by an arbitrarily shaped object with a chiral inclusion, for oblique incidence of an on-axis Gaussian beam, is formulated based on the extended boundary condition method. The incident Gaussian beam, scattered fields as well as internal fields are expanded in terms of appropriate spherical vector wave functions, and the unknown expansion coefficients are determined by a system of equations derived from Schelkunoff׳s equivalence theorem and continuous boundary conditions. Numerical results of the normalized differential scattering cross section are presented, and the scattering characteristics are discussed concisely.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.