Abstract

The topological quantum number Q of a superconducting or chiral insulating wire counts the number of stable bound states at the end points. We determine Q from the matrix r of reflection amplitudes from one of the ends, generalizing the known result in the absence of time-reversal and chiral symmetry to all five topologically nontrivial symmetry classes. The formula takes the form of the determinant, Pfaffian, or matrix signature of r, depending on whether r is a real matrix, a real antisymmetric matrix, or a Hermitian matrix. We apply this formula to calculate the topological quantum number of N coupled dimerized polymer chains, including the effects of disorder in the hopping constants. The scattering theory relates a topological phase transition to a conductance peak, of quantized height and with a universal (symmetry class independent) line shape. Two peaks which merge are annihilated in the superconducting symmetry classes, while they reinforce each other in the chiral symmetry classes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.