Abstract
Summary The model problem of scattering of a sound wave by an infinite plane structure formed by a semi-infinite acoustically hard screen and a semi-infinite sandwich panel perforated from one side and covered by a membrane from the other is exactly solved. The model is governed by two Helmholtz equations for the velocity potentials in the upper and lower half-planes coupled by the Leppington effective boundary condition and the equation of vibration of a membrane in a fluid. Two methods of solution are proposed and discussed. Both methods reduce the problem to an order-2 vector Riemann–Hilbert problem. The matrix coefficients have different entries, have the Chebotarev–Khrapkov structure and share the same order-4 characteristic polynomial. Exact Wiener–Hopf matrix factorization requires solving a scalar Riemann–Hilbert on an elliptic surface and the associated genus-1 Jacobi inversion problem solved in terms of the associated Riemann θ-function. Numerical results for the absolute value of the total velocity potentials are reported and discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Quarterly Journal of Mechanics and Applied Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.