Abstract

Scatter due to interaction of photons with the imaged object is a fundamental problem in X-ray Computed Tomography (CT). It manifests as various artifacts in the reconstruction, making its abatement or correction critical for image quality. Despite success in specific settings, hardware-based methods require modification in the hardware, or increase in the scan time or dose. This accounts for the great interest in software-based methods, including Monte-Carlo based scatter estimation, analytical-numerical, and kernel-based methods, with data-driven learning-based approaches demonstrated recently. In this work, two novel physics-inspired deep-learning-based methods, PhILSCAT and OV-PhILSCAT, are proposed. The methods estimate and correct for the scatter in the acquired projection measurements. Different to previous works, they incorporate both an initial reconstruction of the object of interest and the scatter-corrupted measurements related to it, and use a deep neural network architecture and cost function, both specifically tailored to the problem. Numerical experiments with data generated by Monte-Carlo simulations of the imaging of phantoms reveal advantages over our implementation of a recent purely projection-domain deep neural network scatter correction method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.