Abstract

In this study, a deep multi-layered group method of data handling (GMDH)-type neural network is applied to the medical image analysis of the abdominal X-ray computed tomography (CT) images. The deep neural network architecture which has many hidden layers are automatically organized using the deep multi-layered GMDH-type neural network algorithm so as to minimize the prediction error criterion defined as Akaike’s information criterion (AIC) or prediction sum of squares (PSS). The characteristics of the medical images are very complex and therefore the deep neural network architecture is very useful for the medical image diagnosis and medical image recognition. In this study, it is shown that this deep multi-layered GMDH-type neural network is useful for the medical image analysis of abdominal X-ray CT images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.