Abstract

We report the numerical observation of scarring, which is enhancement of probability density around unstable periodic orbits of a chaotic system, in the eigenfunctions of the classical Perron-Frobenius operator of noisy Anosov ("perturbed cat") maps, as well as in the noisy Bunimovich stadium. A parallel is drawn between classical and quantum scars, based on the unitarity or nonunitarity of the respective propagators. For uniformly hyperbolic systems such as the cat map, we provide a mechanistic explanation for the classical phase-space localization detected, based on the distribution of finite-time Lyapunov exponents, and the interplay of noise with deterministic dynamics. Classical scarring can be measured by studying autocorrelation functions and their power spectra.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.