Abstract

In the realm of photovoltaic applications, scientists and technocrats are striving to maximize the solar cell input photon energy conversion to electricity. However, achieving optimal cell efficiency requires significant time and energy investment for each variation and optimization. To overcome this issue authors simulated and studied the fabricated cell for optimizing conditions, which can save time and efforts for the relatively better outcomes. The family of transition metal chalcogenides holds promise as a material that yield improved outcomes in optoelectronic applications, particularly in photovoltaics. These materials are employed in experimental investigations aimed at enhancing solar cell parameters, resulting in the development of the FTO/ZnO/ZrS2/MoS2/CuO/Au composite cell. Numerical simulations utilizing SCAPS-1D software is conducted, focusing on the significance of CuO as a hole transport layer (HTL), and ZnO as an electron transport layer (ETL). The investigation examines into the impact of various factors, including thickness, bandgap, and carrier densities for both HTL and ETL, on fundamental solar cell parameters. The study indicates that device parameters are influenced by factors such as recombination rate, photogenerated current, charge carrier length, and built-in-voltage. Optimized parameters for HTL, including thickness, bandgap, and carrier concentration, are determined to be 0⋅35 μm, 1⋅2 eV, and 1⋅0 × 1020 cm–3, respectively. For ETL, the optimized parameters are found to be 0⋅05 μm, 3⋅1 eV, and 1⋅0 × 1018 cm–3, respectively. With these optimized parameters, the efficiency of the solar cell reached 20⋅64%, accompanied by open circuit voltage, short circuit current density, and fill factor values of 0.836 V, 36.021 mA⋅cm–2, and 68⋅54%, respectively. The simulated results indicate that addition of two extra layers and the use of efficient binary materials in heterojunction formation can effectively enhance device parameters, offering advantages such as low-cost and large-scale fabrication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.