Abstract

Niobium-containing H6+xP2W18−xNbxO62 (x=0, 1, 2, 3) Wells-Dawson heteropolyacids (HPAs) were investigated by scanning tunneling microscopy (STM) and tunneling spectroscopy (TS) in order to elucidate their redox properties. The HPAs formed two-dimensional well-ordered monolayer arrays on graphite surface and exhibited a distinctive current-voltage behavior called negative differential resistance (NDR) in their tunneling spectra. NDR peak voltage measured on HPA molecule was correlated with reduction potential and absorption edge energy determined by electrochemical method and UV-visible spectroscopy, respectively. NDR peak voltage of H6+xP2W18−xNbxO62 Wells-Dawson HPAs appeared at less negative voltage with increasing reduction potential and with decreasing absorption edge energy. Oxidative dehydrogenation of isobutyraldehyde was also carried out as a model reaction to probe oxidation catalysis of the HPAs. The trend of NDR peak voltage of H6+xP2W18−xNbxO62 Wells-Dawson HPAs was well consistent with the trend of yield for methacrolein.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.