Abstract

We investigate the accuracy and reliability of temperature mapping using scanning thermal microscopy (SThM) in contact and PeakForce tapping mode on the example of a GaN-on-SiC high electron mobility transistor (HEMT). HEMT steady-state and transient surface temperatures are extracted from SThM measurements to study the method’s accuracy and transient thermal response of the SThM probe; the results are verified by 3D finite element thermal simulation calibrated by Raman thermography. A reliable pixel-by-pixel calibration method to convert the measured electromotive force into surface temperature was developed. Discrete point measurements show good agreement (±3 °C) with the simulation in both contact and PeakForce tapping modes proving the feasibility of the SThM for accurate device thermography at the nanoscale. However, the measured temperature in calibrated 2D temperature maps deviates by as much as ~15–44% from the simulation, suggesting the SThM probe did not reach the temperature steady state due to limitations in pixel dwell time during the recording of the 2D map.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.