Abstract
This article investigates vortex states and phases in superconducting mesoscopic dots, antidots, and other structures using a scanning superconducting quantum interference device (SQUID) microscope. It begins with an introduction to the phenomenology of superconductivity and the fundamentals of vortex confinement in mesoscopic superconductors. It then provides a background on the SQUID microscope, followed by a discussion of how a high-resolution scanning SQUID microscope was developed. It also describes what the scanning SQUID microscopy revealed about quantized flux in superconducting rings, as well as vortex confinement in microscopic superconducting disks, triangles, and squares. Finally, it presents the results of direct observation of an extended penetration depth in thin films and vortex states in high-temperature superconductors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.