Abstract
An effective approach to improve the detection efficiency of nanoscale light sources relies on a planar antenna configuration, which beams the emitted light into a narrow cone. Planar antennas operate like optical Yagi-Uda antennas, where reflector and director elements are made of metal films. Here we introduce and investigate, both theoretically and experimentally, a scanning implementation of a planar antenna. Using a small ensemble of molecules contained in fluorescent nanobeads placed in the antenna, we independently address the intensity, radiation pattern, and decay rate as a function of distance between a flat-tip scanning gold wire (reflector) and a thin gold film coated on a glass coverslip (director). The scanning planar antenna changes the radiation pattern of a single fluorescent bead, and it beams light into a narrow cone down to angles of 45 ∘ (full width at half maximum). Moreover, the collected signal compared to the case of a glass coverslip is larger than a factor of three, which is mainly due to the excitation enhancement. These results offer a better understanding of the modification of light–matter interaction by planar antennas, and they hold promise for applications such as sensing, imaging, and diagnostics.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have