Abstract

We demonstrate imaging using scanning microwave microscopy (SMM) of vital mitochondria in respiration buffer. The mitochondria are isolated from cultured HeLa cells and tethered to a solid graphene support. The mitochondria are kept vital (alive) using a respiration buffer, which provides nutrients to sustain the Krebs cycle. We verify that the mitochondria are "alive" by measuring the membrane potential using a voltage sensitive fluorescent dye (TMRE). The organelles are measured capacitively at 7 GHz. Several technical advances are demonstrated which enable this work: 1) The SMM operates in an electrophysiologically relevant liquid (hence conducting) environment; 2) The SMM operates in tapping mode, averaging the microwave reflection measurement over many tapping periods; 3) A tuned reflectometer enables increased sensitivity; 4) Variable frequencies up to 18 GHz are used; 5) In contrast with traditional matching/resonant methods that exhibit high quality factor that fail in the presence of liquids, interferometric/tuned reflectometer gives the possibility to adjust the quality factor or sensitivity even in the presence of the liquid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.