Abstract

Scanning ion conductance microscopy (SICM) is becoming a powerful multifunctional tool for probing and analyzing surfaces and interfaces. This work outlines methodology for the quantitative controlled delivery of ionic redox-active molecules from a nanopipette to a substrate electrode, with a high degree of spatial and temporal precision. Through control of the SICM bias applied between a quasi-reference counter electrode (QRCE) in the SICM nanopipette probe and a similar electrode in bulk solution, it is shown that ionic redox species can be held inside the nanopipette, and then pulse-delivered to a defined region of a substrate positioned beneath the nanopipette. A self-referencing hopping mode imaging protocol is implemented, where reagent is released in bulk solution (reference measurement) and near the substrate surface at each pixel in an image, with the tip and substrate currents measured throughout. Analysis of the tip and substrate current data provides an improved understanding of mass transport and nanoscale delivery in SICM and a new means of synchronously mapping electrode reactivity, surface topography, and charge. Experiments on Ru(NH3)63+ reduction to Ru(NH3)62+ and dopamine oxidation in aqueous solution at a carbon fiber ultramicroelectrode (UME), used as the substrate, illustrate these aspects. Finite element method (FEM) modeling provides quantitative understanding of molecular delivery in SICM. The approach outlined constitutes a new methodology for electrode mapping and provides improved insights on the use of SICM for controlled delivery to interfaces generally.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call