Abstract

We introduce a spectrometer capable of measuring sample absorption spectra in the visible regime, based on a time-domain scanning Fourier transform (FT) approach. While infrared FT spectrometers typically employ a Michelson interferometer to create the two delayed light replicas, the proposed apparatus exploits a compact common-mode passive interferometer that relies on the use of birefringent wedges. This ensures excellent path-length stability (∼λ/300) and accuracy, with no need for active feedback or beam tracking. We demonstrate the robustness of the technique measuring the transmission spectrum of a colored bandpass filter over one octave of bandwidth and compare the results with those obtained with a commercial spectrophotometer.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call