Abstract
Quantification of dopant profiles in two dimensions (2D) for p-n junctions has proven to be a challenging problem. The scanning capacitance microscope (SCM) capability for p-n junction imaging has only been qualitatively demonstrated. No well-established physical model exists yet for the SCM data interpretation near the p-n junction. In this work, the experimental technique and conversion algorithm developed for nonjunction samples are applied to p-n junction quantification. To understand the SCM response in the active p-n junction region, an electrical model of the junction is proposed. Using one-dimensional secondary ion mass spectrometry (SIMS) data, the carrier distribution in the vertical dimension is calculated. The SIMS profile and carrier distribution is then compared with the SCM data converted using a first-order model. It is shown that for a certain class of profiles, the SCM converted dopant profile fits well to the SIMS data in one dimension. Under this condition, it is possible to identify the metallurgical p-n junction position in two dimensions. Examples of 2D metallurgical p-n junction delineation are presented. In addition, the SCM ability to locate the 2D position of the intrinsic point in the p-n junction depletion region is demonstrated. The SCM probe tip size is found to be a major factor limiting the SCM accuracy on shallow profiles. On junctions with shallow profiles, the SCM tip interacts with carriers on both sides of the junction. As a consequence, a decrease in accuracy and spatial resolution is observed using a first-order conversion algorithm.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have