Abstract

ABSTRACT Expanded vermiculite was used as an adsorbent to remove ammonia nitrogen from landfill leachate. Bench and pilot-scale adsorption experiments were performed with leachate collected from a closed sanitary landfill located in Curitiba, southern Brazil. At the bench-scale, two different heights of vermiculite and three different flow rates were tested using a fixed-bed column. These tests produced an average uptake capacity of 33.4 mg g−1 for the ammonia nitrogen concentration of 2,560 mg L−1. The Yan model was used to determine the breakthrough and the exhaustion times due to the best fit of the data to this model. At the pilot-scale, the flow rate was determined from the shortest length of the mass transfer zone obtained from bench-scale experiments. Tests were performed using one stainless-steel column filled with 26.2 kg of expanded vermiculite, which resulted in a bed height of 1.6 m. A leachate flow rate of approximately 350 L d−1 was applied to achieve the required contact time of 8.3 h. At this scale, an average uptake capacity of 18.1 mg g−1 was obtained for the ammonia nitrogen concentration of 1,193 mg L−1. It is worth mentioning that the flow rate and the concentration of the adsorbate in the feeding solution are fundamental to improve the operational time of the fixed-bed column. The main goal of this research was the determination of operating conditions to scale-up the adsorption process of ammonia nitrogen onto expanded vermiculite. The contact time was a key parameter to reach this goal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.