Abstract

Soft elastic materials embedded with resonant inclusions are widely used as acoustic coatings for maritime applications. A versatile analytical framework for resonance scattering of sound waves in a soft material by a lattice of hard inclusions of complex shape is presented. Analogies from hydrodynamics and electrostatics are employed to derive universal scaling relations for a small number of well-known lumped parameters that map resonant scattering of a complex-shaped hard inclusion to that of a sphere. Multiple scattering of waves between inclusions in proximity is also considered. The problem is then treated using an effective medium theory, viz, a layer of hard inclusions is modeled as a homogenized layer with some effective properties. The acoustic performance of hard inclusions for a range of shapes with spheres of the same volume are compared. Results obtained using this approach are in good agreement with finite element simulations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call