Abstract

ABSTRACTThis paper investigates the issues in the scaling of thin film PZT (Lead-Zirconate-Titanate) capacitors for DRAM (Dynamic Random Access Memories) applications. The test structures used were MIM (metal-insulator-metal) capacitors with platinum electrodes and PZT deposited using a sol-gel process. Charge storage density (Q'c), leakage current density (JL), unipolar switching time to 10% decay (ts), time dependent dielectric breakdown (TDDB) and electrical fatigue have been analyzed. Unipolar switching time has been modeled as an RC time constant, where C is electric-field dependent. Q'c at a given electric field appears to remain constant over the range of film thicknesses and electrode areas studied. Leakage current density and time-to-breakdown (tBD) for a given electric field degrade with decreasing film thickness. Unipolar stressing causes considerably less fatigue than bipolar stressing, and after 2 × 1011 cycles, a 400nm film still exhibits sufficient Q'c for DRAM operation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.