Abstract

The crucial problem for better understanding the nature of glass transition and related relaxation phenomena is to find proper interrelations between the molecular dynamics and thermodynamics of viscous systems. To make progress towards this goal the recently observed density scaling of viscous liquid dynamics has been very intensively and successfully studied in the past few years. However, previous attempts at related scaling of volumetric data yielded results inconsistent with those found from the density scaling of molecular dynamics. In this paper, we show that volumetric data obtained from simulations in simple molecular models based on the Lennard-Jones (LJ) potential, such as the Kob-Andersen binary LJ liquid, its repulsive inverse power-law version, and the Lewis-Wahnström o-terphenyl model, can be scaled by using the same value of the exponent, which scales dynamic quantities and is directly related to the exponent of the repulsive inverse power law that underlies short-range approximations of the LJ potential.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call