Abstract

The use of the Lennard-Jones (LJ) potential in computer simulations of aqueous electrolyte solutions is widespread. The standard approach is to parametrize LJ potential parameters against thermodynamic solution properties, but problems in representing the local structural and dynamic properties of ion hydration shells remain. The r-12-term in the LJ potential is responsible for this as it leads to overly repulsive ion-water interactions at short range. As a result, the LJ potential predicts blue-shifted vibrational peaks of the cations' rattling mode and too large negative ion hydration entropies. We demonstrate that cation-water effective pair potentials derived from ab initio MD data have softer short-range repulsions and represent hydration shell properties significantly better. Our findings indicate that replacing the LJ potential with these effective pair potentials offers a promising route to represent thermodynamic solution properties and local interactions of specific ions with nonpolarizable force field models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call