Abstract

This paper is a continuation of an earlier paper [P.E. Hancock, Velocity scales in the near-wall layer beneath reattaching turbulent separated and boundary layer flows, Eur. J. Mech. B Fluids 24 (2005) 425–438] in which it is proposed that each Reynolds stress has its own velocity scale. Two of these, u τ ′ and w τ ′ , are directly related by definition to the r.m.s. of the wall-shear-stress fluctuations ( τ x and τ z ) in the streamwise and transverse directions. They are also velocity scales for the true dissipation of the turbulent kinetic energy and the Kolmogorov velocity and length scales at the surface. From asymptotic considerations it is shown that the other two scales are related to averages involving instantaneous gradients of wall-shear-stress fluctuations. The measurements, made using pulsed-wire anemometry into the viscous sublayer, show that u τ ′ and w τ ′ are also the velocity scales for the respective streamwise and transverse fourth-order velocity moments, together with the viscous velocity scale ( ν / y ). Normalised, the fourth-order moments show an inner-layer-like behaviour independent of both position and direction, like that seen in the second-order moments [P.E. Hancock, Velocity scales in the near-wall layer beneath reattaching turbulent separated and boundary layer flows, Eur. J. Mech. B Fluids 24 (2005) 425–438]. However, not surprisingly, the third order moments exhibit an effect of mean shear, seen in the skewing of the probability distributions. Though not measured directly, the measurements imply the behaviour of the averaged products of fluctuations in wall-shear-stress and wall-pressure-gradient ( τ x ∂ p / ∂ x ¯ and τ z ∂ p / ∂ z ¯ ). Normalised, they also are independent of position and direction. Some of the results presented apply more generally to the near-wall region beneath turbulent flow.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.