Abstract

We calculate exactly the probability to find the ground state of the XY chain in a given spin configuration in the transverse σz-basis. By determining finite-volume corrections to the probabilities for a wide variety of configurations, we obtain the universal boundary entropy at the critical point. The latter is a benchmark of the underlying boundary conformal field theory characterizing each quantum state. To determine the scaling of the probabilities, we prove a theorem that expresses, in a factorized form, the eigenvalues of a sub-matrix of a circulant matrix as functions of the eigenvalues of the original matrix. Finally, the boundary entropies are computed by exploiting a generalization of the Euler–MacLaurin formula to non-differentiable functions. It is shown that, in some cases, the spin configuration can flow to a linear superposition of Cardy states. Our methods and tools are rather generic and can be applied to all the periodic quantum chains which map to free-fermionic Hamiltonians.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.