Abstract
To characterize a destruction of Anderson localization by nonlinearity, we study the spreading behavior of initially localized states in disordered, strongly nonlinear lattices. Due to chaotic nonlinear interaction of localized linear or nonlinear modes, energy spreads nearly subdiffusively. Based on a phenomenological description by virtue of a nonlinear diffusion equation, we establish a one-parameter scaling relation between the velocity of spreading and the density, which is confirmed numerically. From this scaling it follows that for very low densities the spreading slows down compared to the pure power law.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have