Abstract

Cities are both the primary cause of global climate change and the key to the mitigation agenda. China's unprecedented urbanization has paralleled a growth in energy demand and urban areas have emerged as the crux of CO2 emissions reduction in China. There is a crucial need for policymakers to understand how CO2 emissions scale with city size and adopt economies of scale (cost savings) for mitigation, particularly through a multidimensional lens of city size. This study reveals a set of scaling relations between urban scope 1 CO2 emissions and five dimensions of city size in 340 Chinese cities, including population (POP), built-up area (BA), building height (BH), specific built-up area (SBA), and built-up volume (BV). The findings show that CO2 emissions in Chinese cities scale linearly with POP and BA but sublinearly with BA, SBA, and BV, and more diverse regimes exist across various geographic zones, population hierarchies, administrative hierarchies, and governance contexts. The prevalent sublinear scaling regime between CO2 emissions and SBA and BV demonstrates the potential importance of optimizing the vertical built-up landscapes for establishing a zero‑carbon society. Furthermore, the top 10 % and bottom 10 % performance of individual cities in emissions identified by the Scale-Adjusted Metropolitan Indicator (SAMI) (the smaller the better) highlights the imprints of the socioeconomic context (e.g., Low Carbon City Initiative) on the scaling of CO2 emissions in Chinese cities, which is critical for developing decarbonization strategies. Our multidimensional analysis can assist in the local-tailored low-carbon development of Chinese cities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call