Abstract

Well-resolved large-eddy simulations are used to study adverse-pressure-gradient (APG) turbulent boundary layers (TBLs) under near-equilibrium conditions. In particular, we focus on two near-equilibrium cases where the power-law freestream velocity distribution is adjusted in order to produce long regions with a constant value of the Clauser pressure-gradient parameter \(\beta \). In the first case we obtain an APG TBL with a constant value of \(\beta \simeq 1\) over 37 average boundary-layer thicknesses, and in the second one a constant value of \(\beta \simeq 2\) for around 28 average boundary-layer thicknesses. The scaling law suggested by Kitsios et al. (Int J Heat Fluid Flow 61:117–128, 2016, [10]), proposing the edge velocity and the displacement thickness as scaling parameters, was tested on the two constant-pressure-gradient parameter cases. The mean velocity and Reynolds-stress profiles were found to be dependent on the downstream development, a conclusion in agreement with classical theory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.