Abstract
We study the homogenization of nonlinear, first-order equations with highly oscillatory mixing spatio-temporal dependence. It is shown in a variety of settings that the homogenized equations are stochastic Hamilton-Jacobi equations with deterministic, spatially homogenous Hamiltonians driven by white noise in time. The paper also contains proofs of some general regularity and path stability results for stochastic Hamilton-Jacobi equations, which are needed to prove some of the homogenization results and are of independent interest.
Submitted Version (Free)
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have