Abstract

Ultrasonic attenuation spectra of the nitrobenzene– n-hexane mixture of critical composition have been analysed. Data between 50 kHz and 1 GHz from different sources have been included to show that at a given temperature the spectra, in addition to the critical contribution, reveal a non-critical relaxation term. Taking this additional term into account inconsistencies in the scaling function reported in the literature are avoided. In the final analysis the scaling function of the nitrobenzene– n-hexane system follows the predictions of the Bhattacharjee–Ferrell theory with critical amplitude and relaxation rate of concentration fluctuations in nice agreement with determinations from independent methods. The low-frequency attenuation data are briefly discussed with a view to a bulk viscosity approach which yields a slightly different proportionality constant in the linear regime of the scaling function than the Bhattacharjee–Ferrell theory. Evidence in favour of the latter is obtained.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.