Abstract
Abstract The mechanics of detachment (e.g., a cylindrical fibril separating from a dissimilar substrate) has been treated in the perspectives of contact mechanics and fracture mechanics theory along with numerical simulations, but systematic experimental studies on the adhesion of an individual microfibril is still scarce. In this work, we conducted a detailed experiment on the adhesion tests of individual cylindrical microfibrils, within a large range of varying diameters from 4 to 400 μm, made of three different polyurethanes with moduli among ∼1–40 MPa. We confirmed the scaling effect of an individual microfibril, i.e., the adhesion σad of the individual fibril scales with fibrillar diameters D with an exponent of ∼ −0.4 to −0.45. As the fibrillar diameter is reduced below 10 μm, the adhesion becomes unchanged and size insensitive. This result is in good agreement with the theoretical predictions. Furthermore, the effects of the Young’s modulus and retraction rates during the adhesion tests on the adhesion strength were also investigated. Our experimental work will provide a guide for the optimal design of the micron-scale surfaces with improved adhesion.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.