Abstract
Amorphous solids such as coffee foam, toothpaste, or mayonnaise display a transient creep flow when a stress Σ is suddenly imposed. The associated strain rate is commonly found to decay in time as γ[over ˙]∼t^{-ν}, followed either by arrest or by a sudden fluidization. Various empirical laws have been suggested for the creep exponent ν and fluidization time τ_{f} in experimental and numerical studies. Here, we postulate that plastic flow is governed by the difference between Σ and the transient yield stress Σ_{t}(γ) that characterizes the stability of configurations visited by the system at strain γ. Assuming the analyticity of Σ_{t}(γ) allows us to predict ν and asymptotic behaviors of τ_{f} in terms of properties of stationary flows. We test successfully our predictions using elastoplastic models and published experimental results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.