Abstract

The scaling behavior of the transfer characteristics of solution-processed disordered organic thin-film transistors with channel length is investigated. This is done for a variety of organic semiconductors in combination with gold injecting electrodes. From the channel-length dependence of the transistor resistance in the conducting ON-state, we determine the field-effect mobility and the parasitic series resistance. The extracted parasitic resistance, typically in the MΩ range, depends on the applied gate voltage, and we find experimentally that the parasitic resistance decreases with increasing field-effect mobility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call