Abstract
Today, advances in medical informatics brought on by the increasing availability of electronic medical records (EMR) have allowed for the proliferation of data-centric tools, especially in the context of personalized healthcare. While these tools have the potential to greatly improve the quality of patient care, the effective utilization of their techniques within clinical practice may encounter two significant challenges. First, the increasing amount of electronic data generated by clinical processes can impose scalability challenges for current computational tools, requiring parallel or distributed implementations of such tools to scale. Secondly, as technology becomes increasingly intertwined in clinical workflows these tools must not only operate efficiently, but also in an interpretable manner. Failure to identity areas of uncertainty or provide appropriate context creates a potentially complex situation for both physicians and patients. This paper will present a case study investigating the issues associated with first scaling a disease prediction algorithm to accommodate dataset sizes expected in large medical practices. It will then provide an analysis on the diagnoses predictions, attempting to provide contextual information to convey the certainty of the results to a physician. Finally it will investigate latent demographic features of the patient’s themselves, which may have an impact on the accuracy of the diagnosis predictions.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have