Abstract

The usual process to produce NiTi shape memory alloy is by vacuum induction melting (VIM) using a graphite crucible, which causes contamination of the melt with carbon. Contamination with oxygen originates from the residual oxygen inside the melting chamber. An alternative process to produce NiTi alloys is by electron beam melting (EBM) using a water-cooled copper crucible that eliminates carbon contamination, and the oxygen contamination would be minimal due to operation in a vacuum of better than 10 -2 Pa. In a previous work, it was demonstrated that the technique is feasible for button shaped samples weighing around 30g. The present work presents the results on the scale up program that enables the production of larger samples/ingots. The results are very promising in terms of chemical composition homogeneity as well as in terms of carbon contamination, the latter being four to ten times lower than the commercially-produced VIM products, and in terms of final oxygen content which is shown to depend primarily on the starting raw materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.