Abstract

The success of machine learning has resulted from its structured representation of data. Similar data have close internal representations as compressed codes for classification or emerged labels for clustering. We observe that the frequency of internal codes or labels follows power laws in both supervised and unsupervised learning models. This scale-invariant distribution implies that machine learning largely compresses frequent typical data, and simultaneously, differentiates many atypical data as outliers. In this study, we derive the process by which these power laws can naturally arise in machine learning. In terms of information theory, the scale-invariant representation corresponds to a maximally uncertain data grouping among possible representations that guarantee a given learning accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.