Abstract

Collective behavior spans several orders of magnitude of biological organization, from cell colonies to flocks of birds. We used time-resolved tracking of individual glioblastoma cells to investigate collective motion in an ex vivo model of glioblastoma. At the population level, glioblastoma cells display weakly polarized motion in the (directional) velocities of single cells. Unexpectedly, fluctuations in velocities are correlated over distances many times the size of a cell. Correlation lengths scale linearly with the maximum end-to-end length of the population, indicating that they are scale-free and lack a characteristic decay scale other than the size of the system. Last, a data-driven maximum entropy model captures statistical features of the experimental data with only two free parameters: the effective length scale (nc) and strength (J) of local pairwise interactions between tumor cells. These results show that glioblastoma assemblies exhibit scale-free correlations in the absence of polarization, suggesting that they may be poised near a critical point.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.