Abstract
The second Rayleigh–Sommerfeld (RS) diffraction integral, wherein the normal derivative is specified, is evaluated in simple closed form for all axial points when a divergent or convergent spherical wave is incident upon a circular aperture or disk. These evaluations (solutions) are compared with known corresponding solutions of the first RS diffraction integral. These sets of solutions are intercompared with their mean value, i.e., the derived solutions of the Kirchhoff diffraction integral. The three diffraction formulations are shown to be in agreement for incident divergent spherical waves when the source and observation points are equally distant from the aperture or disk. Conversely, for convergent spherical waves, the three formulations are never in exact agreement for focal and observation points located at finite distances from the aperture, though at optical frequencies the relative error at the geometric focal point is vanishingly small. The second RS formulation predicts, in the limit of plane waves incident on a disk, that the axial irradiance is everywhere equal to the incident irradiance, whereas the first RS formulation predicts that the irradiance goes to zero at the back of the disk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.