Abstract

A new scalar diffraction modeling method for simulating the readout signal of optical disks is described. The information layer is discretized into pixels that are grouped in specific ways to form written and unwritten areas. A set of 2D wave functions resulting from these pixels at the detection aperture is established. A readout signal is obtained via the assembly of wave functions from this set according to the content under the scanning spot. The method allows efficient simulation of jitter noise due to edge deformation of recorded marks, which is important at high densities. It is also capable of simulating a physically irregular mark, thereby helping to understand and optimize the recording process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.