Abstract

Ti doped MoO2 nanoparticles with high BET surface area of 135m2/g were synthesized via scalable solvothermal cracking of polycrystalline MoO3 microparticles prepared by ultrasonic spray pyrolysis. The pristine MoO2 and Ti doped MoO2 nanoparticles showed metallic conductivity, whereas the MoO3 microparticles had semi-conducting behavior. In addition, the Ti doping in MoO2 nanoparticles formed stronger MoO bond than the pristine MoO2 and consequently exhibited improved stability against humidity. Accordingly, the p-i-n type planar CH3NH3PbI3 perovskite solar cells with Ti doped MoO2 inorganic hole transporting material showed 15.8% of power conversion efficiency at 1 Sun condition (100mW/cm2) and significantly improved humidity stability.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.