Abstract

Nanobodies are single-domain antibody fragments that have garnered considerable use as diagnostic and therapeutic agents as well as research tools. However, obtaining pure VHHs, like many proteins, can be laborious and inconsistent. High level cytoplasmic expression in E. coli can be challenging due to improper folding and insoluble aggregation caused by reduction of the conserved disulfide bond. We report a systems engineering approach leveraging engineered strains of E. coli, in combination with a two-stage process and simplified downstream purification, enabling improved, robust, soluble cytoplasmic nanobody expression, as well as rapid cell autolysis and purification. This approach relies on the dynamic control over the reduction potential of the cytoplasm, incorporates lysis enzymes for purification, and can also integrate dynamic expression of protein folding catalysts. Collectively, the engineered system results in more robust growth and protein expression, enabling efficient scalable nanobody production, and purification from high throughput microtiter plates, to routine shake flask cultures and larger instrumented bioreactors. We expect this system will expedite VHH development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.