Abstract

A facile, industrially viable strategy is proposed for the scalable production of transition metal disulphide/graphite nanoflake composites by a combination of ball milling and short-time sonication. The experimental conditions are mild and energy efficient, and the yields are fairly high. This strategy can produce larger MoS2 and WS2 nanoflakes with more lithium storage sites than the conventional, long-time sonication method. Besides, the obtained graphite nanoflakes have a higher degree of lattice integrity than reduced graphene oxide that is structurally permanently damaged, and can thus serve as a high-efficiency conductive additive. A prominent synergy is witnessed between the excellent electrochemical performances of the MoS2 and WS2 nanoflakes and the high electronic conductivity of the graphite nanoflakes. The resulting MoS2 and WS2/graphite nanoflake composites exhibit superior lithium storage capacities, cycling stabilities and rate capabilities, thus providing a basis for developing high-performance anodes of next-generation lithium-ion batteries.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.