Abstract

Enhancements to the mechanical properties of modular designs for bone tissue engineering could increase their clinical applications. In this study, bone marrow mesenchymal stem cells (MSCs) and hydroxyapatite (HAP) microgranules were encapsulated in polyelectrolyte complex membranes composed of chondroitin 4-sulfate (C4S), carboxymethyl cellulose (CMC) and chitosan. Microcapsules were formed with and without HAP microgranules, and cultured in either osteoinduction medium (Osteo) or expansion medium (Exp) to produce four microcapsule conditions: Osteo, Osteo+HAP, Exp, and Exp+HAP. Microcapsules facilitated alkaline phosphatase secretion and deposition of bone specific proteins (osteocalcin and osteopontin) by encapsulated MSCs over 28 days of osteogenic culture. SEM and micro-CT analysis showed cell-deposited mineral covering the surfaces of the HAP microgranules and interior of the microcapsule membrane. The mineralized microcapsules could be combined and fused into cylindrical constructs (4 × 5 mm, W × H), and uniaxial compression tests confirmed that microcapsule mineralization greatly enhanced the yield stresses of Osteo and Osteo+HAP fused constructs (10.4 ± 4.4 MPa and 6.4 ± 2.8 MPa), compared to only HAP microgranules (Exp+HAP, 0.5 ± 0.3 MPa). The C4S/CMC/Chitosan microcapsules provide a platform allowing pre-mineralization of microcapsules in vitro for later assembly of larger load-bearing constructs, or for use as an injectable bone regeneration strategy. Statement of SignificanceClinical translation of bone tissue engineering is limited by the difficulty of generating space filling implants that both resist compressive loading, and simultaneously deliver cells throughout the bone defect. Here, we present the design of a microcapsule system containing both stem cells capable of rebuilding bone tissue, and a mechanically tough bone-like mineral, that imparts compression resistance to the microcapsules. The microcapsules support stem cell differentiation to an osteogenic phenotype, that can mineralize the microcapsule membrane and interior. The mineralized microcapsules can be assembled into larger bone constructs, and have mechanical properties on par with trabecular bone.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call