Abstract

High computational requirements combined with rapidly evolving video coding algorithms and standards are a great challenge for contemporary encoder implementations. Rapid specification changes prefer full programmability and configurability both for software and hardware. This paper presents a novel scalable MPEG-4 video encoder on an FPGA-based multiprocessor system-on-chip (MPSOC). The MPSOC architecture is truly scalable and is based on a vendor-independent intellectual property (IP) block interconnection network. The scalability in video encoding is achieved by spatial parallelization where images are divided to horizontal slices. A case design is presented with up to four synthesized processors on an Altera Stratix 1S40 device. A truly portable ANSI-C implementation that supports an arbitrary number of processors gives 11 QCIF frames/s at 50 MHz without processor specific optimizations. The parallelization efficiency is 97% for two processors and 93% with three. The FPGA utilization is 70%, requiring 28 797 logic elements. The implementation effort is significantly lower compared to traditional multiprocessor implementations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.