Abstract

We present GPSat; an open-source Python programming library for performing efficient interpolation of non-stationary satellite altimetry data, using scalable Gaussian process techniques. We use GPSat to generate complete maps of daily 50 km-gridded Arctic sea ice radar freeboard, and find that, relative to a previous interpolation scheme, GPSat offers a 504× computational speedup, with less than 4 mm difference on the derived freeboards on average. We then demonstrate the scalability of GPSat through freeboard interpolation at 5 km resolution, and Sea-Level Anomalies (SLA) at the resolution of the altimeter footprint. Interpolated 5 km radar freeboards show strong agreement with airborne data (linear correlation of 0.66). Footprint-level SLA interpolation also shows improvements in predictive skill over linear regression. In this work, we suggest that GPSat could overcome the computational bottlenecks faced in many altimetry-based interpolation routines, and hence advance critical understanding of ocean and sea ice variability over short spatio-temporal scales.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.